分数の分数の計算方法

分数の分母が分数、分子が分数になっているのを、統計学の本を読んでいると見かけることがあります。

分数の分数の式、この計算方法について書きました。

ひとつめは、割り算の形にして計算する方法です。

$$\frac{1}{\frac{1}{9}}$$

$$=\frac{1}{\frac{1}{9}}$$

$$=1\div \frac{1}{9}$$

$$=1\times \frac{9}{1}$$

$$=9$$

もうひとつは、小さい分母の最小公倍数を、分子と分母に掛けることで計算する方法です。

このような式があったとします。

$$\frac{ \frac{4}{2} }{ \frac{4}{3} }$$

(分母のなかの分母を小さい分母、また、分子の中の分母を小さい分母ということにしましょう。)

小さい分母は、2 と3 ですから最小公倍数は6 です。6 を分子と分母に掛けます。

$$\frac{\frac{4}{2}}{\frac{4}{3}}=\frac{\frac{4}{2}\times 6}{\frac{4}{3}\times 6}=\frac{12}{8}=\frac{3}{2}$$

小さい分母が同じ数であれば、その数をそのまま分母と分子に掛ければOKです。

$$\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{\frac{4}{5}\times 5}{\frac{3}{5}\times 5}=\frac{4}{3}$$